PUBLIC

QUBEE Security Audit

of QBX TOKEN Smart Contracts

June 28, 2018

Produced for

Table Of Content

Foreword e 1
Executive Summary L e e 1
System OVErVIEW e e e 2
Token Sale Overview L e 2
Audit Overview o e 3
Scope of the Audit e 3
Depth of Audit 3
Terminology o e 3
Limitations L e 5
Details of the Findings e 6
Security ISSUES e 7
Unchecked arithmetic operations ‘i‘ 7

Unbounded iteration m 7
Bonus stealing is possible m 7
_checkLimits ignores deposits m 8
_mintTokens is public e 8

Trust ISSUES e e 9
Token can be changed by owner 0 9

Design ISSUES o 10
Inheritance from the OpenZeppelin library is poorly done m 10
Recommendations / Suggestions 11
Disclaimer. 12

ChainSecurity Security Audit Report

Foreword

We first and foremost thank QIIBEE for giving us the opportunity to audit their smart contracts. This documents
outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

The QIIBEE smart contracts, specifically the Crowdsale and Vault contracts, have been analyzed under different
aspects, with a variety of automated security analysis tools and by manual expert review.

Overall, we found that QIIBEE has put efforts into extensive documentation of their codebase.

We discovered several issues which needed to be fixed. QIIBEE has fixed all security issues and most of
the other issues raised during the audit. No further concern remains regarding the security of QIIBEE’S smart

contracts.

ChainSecurity Security Audit Report

System Overview

Token Name & Symbol QBX TOKEN, QBX
Decimals 18 Decimals
Phases Bonus, Normal
Exchange Rate Variable
Refund Yes
Soft and Hard Cap To be defined
Minimum and Maximum contribution To be defined
Token Type ERC 20
Token Generation Mintable
Token Amount 49% of total supply
Pausable Yes
KYC Off-chain

Table 1: Facts about the QBX token and the Token Sale.

In the following we describe the QBX TOKEN (QBX) and its corresponding Token Sale. The table above
gives the general overview.

We note that the crowdsale and its properties summarized in this section hold true under the assumption
that the address of the token contract linked to the QIIBEE crowdsale and vault indeed corresponds to the QBX
TOKEN ERC20 contract, since it is not within the audit scope.

Token Sale Overview

The Token Sale of the QBX TOKEN will proceed within a predefined time range. The first seven days of the
crowdsale serve as a bonus phase, during which any approved investor who passed the KYC procedure will
obtain a 5% bonus on his QBX purchase.

An investor’s individual as well as the total contribution will be capped during the sale. While purchases
during the crowdsale are open to anyone, approval needs to be granted by QIIBEE in order for the buyer to
obtain his QBX tokens. Until this happens, a contributor’s funds are locked in a vault owned by QIIBEE. Once
approval is given, the investor receives his QBX tokens and his funds are transferred from the vault to QIIBEE’s
wallet.

If a buyer does not pass the KYC procedure, his investment, which is locked up in the vault, will be refunded.
The same applies for an investor contributing above the individual limit, meaning that the difference between
the contribution and limit will be refunded.

chainsecurity. com

chainsecurity.com

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were initially
received on May 29, 2018, and updated on May 20, 2018:

File SHA-256 checksum

QiibeeCrowdsale.sol 9e729510c06¢c7cad9466532621d0dbe0a03919b5d5802a07e971705b9e384842

Vault.sol 824e153£0de1106521a9be9f723£5d5873f57db3be3eeadl155d73bc2292fb1£8

The corresponding Git commit is £189£4d019c4f31a12546b74f9b8226c027e7a47.

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-
spect the results.

e Manual audit of the contracts listed above for security issues.
Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology').

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business related consequences of an exploit.

Severity is derived based on the likelihood and the impact calculated previously.

We categorize the findings into 4 distinct categories, depending on their severities:

:: Low: can be considered as less important
° m Medium: should be fixed
° 0 High: we strongly suggest to fix it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

"https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

ChainSecurity Security Audit Report

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

During the audit concerns might arise or tools might flag certain security issues. If our careful inspection
reveals no security impact, we label it as . If during the course of the audit process, an issue has
been addressed technically, we label it as , while if it has been addressed otherwise by improving
documentation or further specification, we label it as . Finally, if an issue is meant to be fixed in
the future without immediate changes to the code, we label it as .

Findings that are labelled as either or are resolved and therefore pose no security

threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

chainsecurity. com

chainsecurity.com

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

ChainSecurity Security Audit Report

Details of the Findings

In this section we detail our results, including both positive and negative findings.

chainsecurity. com

chainsecurity.com

186
187
188
189
190
191
192
193
194
195
196

Security Issues

In the following, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

Unchecked arithmetic operations ‘:‘

Arithmetic operations should always be performed with checks to avoid resulting over- or underflows. Ideally,
this should be done with the SafeMath 2 open source library. Concretely, the crowdsale contract performs an
unchecked addition in the calculation of bonusEndtime.

Likelihood: Low
Impact: Medium

Fixed: bonusEndTime is now calculated using the add function from SafeMath.

Unbounded iteration 0 v Addressed

In the vault contract, the refundA11 function iterates over the array of all fund owners. Since the length of this
array cannot be known, the iteration is potentially unbounded. Assuming a block gas limit of 8 million, which
is close to the current limit on the main network 2, 1040 contributors will already exceed it. Hence, if there are
1040 or more contributors, the function will revert and no owner will obtain his refund.

Likelihood: Medium
Impact: Medium

Fixed: Users can now individually get a refund by calling claimVaultFunds.refundAll could still cause the
contract to exceed the gas limit though, and we think that this function should be removed.

Bonus stealing is possible 0 v Addressed

In the crowdsale contract, QIIBEE already acknowledged the following faulty behaviour:

VARE TS

* TODO: FIX BUG (or let it be): Let’s say Alice invests on 1st week, so bonus[Alice] = true but she does not
* manage to schedule the KYC call during that week. Then, she invests more on the 2nd week.

* Here is when bonus[Alice] is replaced by false.

* Later on, she goes through the KYC process (getting accepted) so her funds of the 2

* contributions (that are are deposited in the vault) are released but she does not receive

* the tokens of the contribution she made during the 1st week.

* MANUAL FIX: This situation is quite unlikely to happen but, if it happens, we can manually

* distribute the bonus tokens to the contributor afterwards.

* SOLUTION: TODO.
*kokk/

QiibeeCrowdsale.sol

However this does not cover a scenario in which an attacker can block the bonus of another investor if he is
ready to lose a certain amount of funds. Especially if the spread between minContrib and maxCumulativeContrib
is big, this attack becomes more likely.

Assuming an investor deposited some significant amount (i.e. close to maxCumulativeContrib) within the
first week, in order to receive a high bonus, an attacker can later additionally contribute minContrib in the
investor’s name after the bonus phase. This leads to the investor losing his bonus, which can be a higher
amount than the attacker’s contribution.

Likelihood: Medium

Impact: Medium

Fixed: buyTokens now checks that msg.sender == beneficiary , so the attack we described is now impos-
sible. The bug described by Qiibee (see red text above) still remains.

2hitps://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
3Real-time changes can be tracked at https:/ethstats.net/

ChainSecurity Security Audit Report

_checkLimits ignores deposits o

When checking that an address’ contributions do not exceed maxCumulativeContrib, checkLimits should also
take vault.deposited(beneficiary) into account. Otherwise, the time period after a user calls buyTokens
but before the owner calls validatePurchase presents a vulnerability. For example: User A calls buyTokens
with maxCumulativeContrib wei. Then, user B calls buyTokens with x wei, and names user A as beneficiary.
Because checkLimits doesn’t check A’s vault, B’s call to buyTokens also passes. When the owner calls
validatePurchase, checkLimits is called again (because of mintTokens) and fails because A’s vault contains
maxCumulativeContrib + x wei. This means that B has successfully blocked A from buying tokens.

Likelihood: Medium

Impact: Medium

Fixed: Because buyTokens now requires that msg.sender == beneficiary, this vulnerability no longer ex-
ists.

_mintTokens is public e

The _mintTokens function is public and can be called by anyone. This allows an attacker to mint QBX tokens
for free, completely bypass the KYC procedure and avoid the _preValidatePurchase check, making it possible
for the attacker to obtain tokens before the sale opens.

Likelihood: High

Impact: High

Fixed: _mintTokens iS NOW internal.

chainsecurity. com

chainsecurity.com

Trust Issues

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into QIIBEE.

Token can be changed by owner 0

The owner of the crowdsale contract can change the token address at any time when he calls the setToken
function. This allows a malicious owner to sell useless tokens first and only later switch the sale to real ones,
or to introduce other issues by swapping addresses during an ongoing sale.

Impact: High

Fixed: setToken Now uses a beforeOpen modifier to ensure that the token can only be changed before
openingTime. We still think that this solution could be improved, by setting the token address in the constructor
and not allowing it to be changed later on.

ChainSecurity Security Audit Report

Design Issues

The points listed here are general recommendations about the design and style of QIIBEE’s project. They
highlight possible ways for QIIBEE to further improve the code.

Inheritance from the OpenZeppelin library is poorly done m v Acknowledged

QIIBEE seems to use the OpenZeppelin library, but only uses it partly.
Contracts are inherited, but most of their functions and modifiers are not used. In the library, the documen-
tation mentions that buyTokens should not be overridden.
/ k%
* Q@dev low level token purchase ***xDO NOT OVERRIDEx**x

* @param _beneficiary Address performing the token purchase

*/

Crowdsale.sol

This function is overridden in QIIBEE case.
The various crowdsale contracts inherited are the following:

e TimedCrowdsale

e CappedCrowdsale

e FinalizableCrowdsale
e Pausable

In those, constraints are often enforced through _prevalidatePurchase, but this function is overridden in
QUBEE’s case. In the case of FinalizableCrowdsale at least, it seems that all functions could have been
implemented correctly, by refraining from overriding finalize, and overriding only finalization instead. This
indicates that there is room for improvement in that regard.

We are not arguing here that checks are not in place; where they are lacking, this has been reported in
previous sections. Rather, we highlight the fact that some of the previous issues can be traced back to this lack
of rigor when reusing the OpenZeppelin library. QIIBEE would benefit from trying to maximize the reuse of the
code from the OpenZeppelin library, and minimize the code written specifically for QIIBEE’s project.

If the code cannot be reused as it is, then these contracts should not be used at all.

Acknowledged: QIIBEE improved the code, but acknowledges that it is still not ideal in its current state. In
particular, the function buyTokens is still overridden in QIIBEE’s code, even though the OpenZeppelin docu-
mentation explicitly says “do not override”. CHAINSECURITY thinks that this issue should be solved before any
deployment.

chainsecurity. com

chainsecurity.com

Recommendations / Suggestions

e In _preValidatePurchase, it is not necessary to check that _beneficiary != address(0) because
the require statement require(msg.sender == _beneficiary) already ensures that this condition is
met. Overall, the beneficiary argument used in various functions could be removed and replaced by
msg.sender.

e (Note: This suggestion has now been implemented.) In the vault contract, specifically the refund func-
tion, the special case depositedValue > 0 is unnecessary: having an event with a refund of 0 should be
considered, just like ERC20 with an amount of 0 still emit events. If this not an option, putting this check
in the function where it is used instead, and using an assert inside the function could make more sense.

e (Note: This suggestion has now been implemented.) Time constraints in the crowdsale contract are
enforced by the _prevalidatePurchase function, while the cap is enforced using a modifier. This lowers
the code readability. More so, the same constraint can be enforced with the onlyWhileOpen modifier
implemented in the TimedCrowdSale from which the QIIBEE crowdsale inherits.

e (Note: This suggestion has now been implemented.) The _checkBonus function takes an argument that
is never used and can hence be dropped.

e (Note: This suggestion has now been implemented.) The vault contract is not tested except for a simple
ownership transfer. Considering the vault holds funds and plays a central role, additional tests should be
added.

e (Note: This suggestion has now been implemented.) An investor's bonus eligibility is tested by the
function _checkBonus, which can be simplified 0 return now <= bonusEndTime;, Saving gas and lines
of code.

e (Note: This suggestion has now been implemented.) As referenced in the trust section, the setToken
function allows the owner to change the token while the sale is ongoing. It should be either used during
migration, or the address value should be hardcoded.

e (Note: This suggestion has now been implemented.) In finalization(), an assert statement should be
added to ensure that foundationSupply is set correctly, for example assert (QiibeeToken (token) . totalSupply ()
== totalSupply.add(foundationSupply)

e Testing and migration should be separated. Because the migration is currently written in the tests, the
test cases will be irrelevant if the migration that is used in practice is not exactly copied from the tests. In
practice, migration scripts get rewritten from scratch in this case, which indeed makes the test cases less
relevant.

e (Note: This suggestion has now been implemented.) The validatePurchase function takes a boolean
as an argument, which is used to distinguish two cases. Instead, two separate functions can be imple-
mented, corresponding to the two different behaviours.

e (Note: This suggestion has now been implemented.) The _mintTokens function is fairly complex and
can be split it into smaller, separate functions to improve readability. These could be computeOverflow,
computeBonus and processDeposit.

e (Note: This suggestion has now been implemented.) require(_maxCumulativeContrib > 0); in the
constructor is useless, given the one which follows.

e (Note: This suggestion has now been implemented.) Within a contract, functions should be in the follow-
ing order: constructor, fallback, external, public, internal, private.4

@ CHAINSECURITY

“http://solidity.readthedocs.io/en/latest/style-guide.html

ChainSecurity Security Audit Report

Disclaimer

UPON REQUEST BY QIIBEE, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUBLIC.
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE
ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT

REMAINS WITH CHAINSECURITY LTD..

chainsecurity. com

chainsecurity.com

	Foreword
	Executive Summary
	System Overview
	Token Sale Overview

	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	Details of the Findings
	Security Issues
	Unchecked arithmetic operations repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unbounded iteration replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Bonus stealing is possible replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	_checkLimits ignores deposits replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	_mintTokens is public replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Token can be changed by owner replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Inheritance from the OpenZeppelin library is poorly done replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Disclaimer

